
Unsolvable Problems
Part Two

Outline for Today

Recap from Last Time

Where are we, again?

A Different Perspective on RE

What exactly does “recognizability” mean?

Verifiers

A new approach to problem-solving.

Beyond RE

A beautiful example of an impossible problem.

Recap from Last Time

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the
universal Turing machine that, when run on an input of the form
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of UTM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

TM

...input...

M

w Universal TM

accept!

reject!

(loop)

M does to w

what

UTM does to ⟨M, w⟩.

Self-Referential Programs

Claim: Any program can be augmented to
include a method called mySource() that
returns a string representation of its
source code.

Theorem: It it possible to build Turing
machines that get their own encodings and
perform arbitrary computations on them.

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Regular
Languages CFLs

All Languages

R RE

ATM

New Stuff!

More Impossibility Results

The Halting Problem

The most famous undecidable problem is the
halting problem, which asks:

Given a TM M and a string w,
will M halt when run on w?

As a formal language, this problem would be
expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w }

This is an RE language. (We’ll see why later.)

How do we know that it’s undecidable?

Claim: A decider for HALT is a self-
defeating object. It therefore doesn’t exist.

A Decider for HALT

Let’s suppose that, somehow, we managed to build a decider
for HALT = { ⟨M, w⟩ | M is a TM that halts on w }.

Schematically, that decider would look like this:

We could represent this decider in software as a method

bool willHalt(string program, string input);

that takes as input a program and a string, then returns
whether that program will halt on that string.

Decider
for HALT

M

w

Yes, M halts on w.

No, M loops on w.

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

accept();
}

}

“The largest
integer n”

“Using n to get n+1”

Theorem: HALT ∉ R.

Proof: By contradiction; assume that HALT ∈ R. Then there’s a decider
D for HALT, which we can represent in software as a method willHalt
that takes as input the source code of a program and an input, then
returns true if the program halts on the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) while (true) { /* loop! */ }
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willHalt method. If willHalt(me,
input) returns true, then P must halt on its input w. However, in this case P
proceeds to loop infinitely on w. Otherwise, if willHalt(me, input) returns false,
then P must not halt its input w. However, in this case P proceeds to accept
its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, HALT ∉ R. ■

HALT ∈ RE

Claim: HALT ∈ RE.

Idea: If you were certain that a TM M halted
on a string w, could you convince me of that?

Yes – just run M on w and see what happens!

int main() {
TM M = getInputTM();
string w = getInputString();
feed w into M;
while (true) {

if (M is in an accepting state) accept();
else if (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

So What?

These problems might not seem all that
exciting, so who cares if we can't solve
them?

Turns out, this same line of reasoning can
be used to show that some very important
problems are impossible to solve.

Secure Voting

• Suppose that you want to make a voting
machine for use in an election between
two parties.

• Let Σ = {r, d}. A string in w corresponds
to a series of votes for the candidates.

• Example: rrdddrd means “two people
voted for r, then three people voted for d,
then one more person voted for r, then
one more person voted for d.”

Secure Voting

• A voting machine is a program that takes
as input a string of r's and d's, then
reports whether person r won the
election.

• Question: Given a TM that someone
claims is a secure voting machine, could
we automatically check whether it
actually is a secure voting machine?

int main() {
string input = getInput();
int numRs = countRsIn(input);
int numDs = countDsIn(input);

if (numRs > numDs) accept();
else reject();

}

int main() {
string input = getInput();

if (input[0] == 'r') accept();
else reject();

}

int main() {
string input = getInput();
int numRs = countRsIn(input);
int numDs = countDsIn(input);

if (numRs = numDs) reject();
else if (numRs < numDs) reject();
else accept();

}

int main() {
string input = getInput();
int n = input.length();
while (n > 1) {

if (n % 2 == 0) n /= 2;
else n = 3*n + 1;

}
int numRs = countRsIn(input);
int numDs = countDsIn(input);

if (numRs > numDs) accept();
else reject();

}

A (simple) secure voting machine. A (simple) insecure voting machine.

An (evil) insecure voting machine. No one knows!

A secure voting machine is a TM M where
ℒ(M) = { w ∈ Σ* | w has more r’s than d’s }

Secure Voting

• A voting machine is a program that takes
as input a string of r's and d's, then
reports whether person r won the
election.

• Question: Given a TM that someone
claims is a secure voting machine, could
we automatically check whether it
actually is a secure voting machine?

Claim: A program that decides whether
arbitrary input programs are secure voting

machines is self-defeating. It therefore
doesn’t exist.

A Decider for Secure Voting

Let’s suppose that, somehow, we managed to build a
decider for the secure voting problem.

Schematically, that decider would look like this:

We could represent this decider in software as a
method

bool isSecureVotingMachine(string program);

that takes as input a program, then returns whether
that program is a secure voting machine.

Decider
for secure

voting

M

Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting
machine?

Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting
machine?

Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting
machine?

Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting
machine?

Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting
machine?

Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting
machine?

Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting
machine?

Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting
machine?

then it's a secure voting machine!

bool isSecureVotingMachine(string program) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting
machine?

then it's a secure voting machine!

Theorem: The secure voting problem is undecidable.

Proof: By contradiction; assume that the secure voting problem is decidable. Then
there is some decider D for the secure voting problem, which we can represent in
software as a method isSecureVotingMachine that, given as input the source code of
a program, returns true if the program is a secure voting machine and false
otherwise.

Given this, we could then construct the following program P:

int main() {
string me = mySource();
string input = getInput();

bool answer = (countRs(input) > countDs(input));
if (isSecureVotingMachine(me)) answer = !answer;

if (answer) accept();
else reject();

}

Now, either P is a secure voting machine or it isn’t. If P is a secure voting machine, then
isSecureVotingMachine(me) will return true. Therefore, when P is run, it will determine whether
w has more r’s than d’s, flip the result, and accept strings with at least as many d’s as r’s
and reject strings with more r’s than d’s. Thus, P is not a secure voting machine. On the
other hand, if P is not a secure voting machine, then isSecureVotingMachine(me) will return
false. Therefore, when P is run, it will accept all strings with at least as many r’s as d’s and
reject all other strings, and so P is a secure voting machine.

In both cases we reach a contradiction, so our assumption must have been wrong.
Therefore, the secure voting problem is undecidable. ■

Interpreting this Result

The previous argument tells us that there is no
general algorithm that we can follow to determine
whether a program is a secure voting machine. In
other words, any general algorithm to check voting
machines will always be wrong on at least one
input.

So what can we do?

• Design algorithms that work in some, but not all
cases. (This is often done in practice.)

• Fall back on human verification of voting
machines. (We do that too.)

• Carry a healthy degree of skepticism about
electronic voting machines. (Then again, did we
even need the theoretical result for this?)

Beyond R and RE

Beyond R and RE

• We've now seen how to use self-reference
as a tool for showing undecidability
(finding languages not in R).

• We still have not broken out of RE yet,
though.

• To do so, we will need to build up a
better intuition for the class RE.

What exactly is the class RE?

RE, Formally

• Recall that the class RE is the class of all
recognizable languages:

• RE = { L | there is a TM M where ℒ(M) = L }

• Since R ≠ RE, there is no general way to “solve”
problems in the class RE, if by “solve” you mean
“make a computer program that can always tell
you the correct answer.”

• So what exactly are the sorts of languages in
RE?

Does this graph contain a 4-clique?

Does this graph contain a 4-clique?

Does this graph contain a 4-clique?

Key Intuition:

A language L is in RE if, for any string w, if
you are convinced that w ∈ L, there is some
way you could prove that to someone else.

Verification

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verification

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku puzzle
have a solution?

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

1

2

5

4

6

3

Verification

Does the hailstone sequence terminate for this number?

11

Verification

Does the hailstone sequence terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

34

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

17

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

52

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

26

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

13

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

40

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

20

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.

Verification

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verification

1

1

3

6

1

8

1

5

1

1

1

1

1

1

1

1

7

1

7

1

1

5

1

2

3

1

4

1

1

1

1

1

1

2

4

1

6

1

1

3

4

1

1

1

8

1

3

5

1

1

1

7

1

1

1

1

9

8

1

5

1

1

7

1

5

1

1

2

1

1

1

1

1

2

7

9

1

4

8

1

1

Does this Sudoku puzzle
have a solution?

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

6

1

5

2

3

4

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

Does the hailstone sequence terminate for this number?

11

Verification

Does the hailstone sequence terminate for this number?

11

Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

34

Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

17

Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

52

Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

26

Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

13

Try running five steps of the Hailstone sequence.

Verification

In each of the preceding cases, we were given
some problem and some evidence supporting
the claim that the answer is “yes.”

• Given the correct evidence, we can be
certain that the answer is indeed “yes.”

• Given incorrect evidence, we aren't sure
whether the answer is “yes.”

Maybe there's no evidence saying that the
answer is “yes,” or maybe there is some
evidence, but just not the evidence we were
given.

Let's formalize this idea.

Verifiers

A verifier for a language L is a TM V with
the following two properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Intuitively, what does this mean?

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Verifiers

A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Some notes about V:

• If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

• If V rejects ⟨w, c⟩, then either

• w ∈ L, but you gave the wrong c, or

• w ∉ L, so no possible c will work.

Verifiers

A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Some notes about V:

• Notice that the certificate c is existentially
quantified. Any string w ∈ L must have at least one
c that causes V to accept, and possibly more.

• V is required to halt, so given any potential
certificate c for w, you can check whether the
certificate is correct.

Verifiers

A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Some notes about V:

• Notice that ℒ(V) ≠ L. (Good question: what is
ℒ(V)?)

• The job of V is just to check certificates, not to
decide membership in L.

Verifiers

A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Some notes about V:

• Although this formal definition works with a string
c, remember that c can be an encoding of some
other object.

• In practice, c will likely just be “some other
auxiliary data that helps you out.”

Some Verifiers

Let L be the following language:

L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
terminates for n }

Let's see how to build a verifier for L.

This verifier will take as input

• a natural number n, and

• some certificate c.

The certificate c should be some evidence that
suggests that the hailstone sequence terminates for
n.

What evidence could we provide?

Verification

Does the hailstone sequence terminate for this number?

11

Verification

Does the hailstone sequence terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

34

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

17

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

52

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

26

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

13

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

40

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

20

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.

Some Verifiers

Let L be the following language:

L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
terminates for n }

Do you see why ⟨n⟩ ∈ L iff there is some c such
that checkHailstone(n, c) returns true?

Do you see why checkHailstone always halts?

bool checkHailstone(int n, int c) {
for (int i = 0; i < c; i++) {

if (n % 2 == 0) n /= 2;
else n = 3*n + 1;

}
return n == 1;

}

Some Verifiers

Let L be the following language:

L = { ⟨G⟩ | G is a graph and G has a
Hamiltonian path }

(Refresher: a Hamiltonian path is a simple path that
visits every node in the graph.)

Let's see how to build a verifier for L.

Our verifier will take as input

• a graph G, and

• a certificate c.

The certificate c should be some evidence that
suggests that G has a Hamiltonian path.

What information could we put into the certificate?

Verification

Is there a simple path that goes
through every node exactly once?

Verification

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Some Verifiers

Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

Do you see why ⟨G⟩ ∈ L iff there is a c where
checkHamiltonian(G, c) returns true?

Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
if (c.size() != G.numNodes()) return false;
if (containsDuplicate(c)) return false;
for (size_t i = 0; i + 1 < c.size(); i++) {

if (!G.hasEdge(c[i], c[i+1])) return false;
}
return true;

}

A Very Nifty Verifier

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

This is a canonical example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

Although this language is undecidable, it’s an RE
language, and it’s possible to build a verifier for
it!

A Very Nifty Verifier

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

We know that UTM is a recognizer for ATM. It is
also a verifier for ATM?

No, for two reasons:

• UTM doesn’t always halt. (Do you see why?)

• UTM takes as input a TM M and a string w. A
verifier also needs a certificate.

A Very Nifty Verifier

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

A verifier for ATM would take as input

• A TM M,

• a string w, and

• a certificate c.

The certificate c should be some evidence that
suggests that M accepts w.

What could our certificate be?

qrej

qacc

start

… 0 0 1 1 …

Run this TM for fifteen steps.

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 0 1 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 0 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… 1 …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

… …

Run this TM for fifteen steps.

qrej

qacc

start

1 → ☐, L 0 → ☐, R

☐ → ☐, R

1 → ☐, L

☐ → ☐, R

0 → 0, L

1 → 1, L

0 → 0, R

☐ → ☐, R

☐ → ☐, L

0 → 0, R

1 → 1, R

Some Verifiers

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

Do you see why M accepts w iff there is some c
such that checkWillAccept(M, w, c) returns true?

Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
set up a simulation of M running on w;
for (int i = 0; i < c; i++) {

simulate the next step of M running on w;
}
return whether M is in an accepting state;

}

What languages are verifiable?

Theorem: If L is a language, then there is
a verifier for L if and only if L ∈ RE.

Where We’ve Been

NFA Regex

Where We’re Going

Verifier Recognizer

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifiers and RE

Requirements on a verifier V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

Theorem: If V is a verifier for L, then L ∈ RE.

Proof sketch: Consider the following program:

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w,
c⟩. The function isInL tries all possible strings as
certificates, so it will eventually find c (or some
other certificate), see V accept ⟨w, c⟩, then return
true. Conversely, if isInL(w) returns true, then there
was some string c such that V accepted ⟨w, c⟩, so w
∈ L. ■

bool isInL(string w) {
for (each string c) {

if (V accepts ⟨w, c⟩) return true;
}

}

Verifiers and RE

Theorem: If L ∈ RE, then there is a verifier
for L.

Proof goal: Beginning with a recognizer M
for the language L, show how to construct a
verifier V for L.

Requirements on a verifier V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

We have a recognizer for a language.

We want to turn it into a verifier.

Where did we see this before?

Some Verifiers

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

Do you see why M accepts w iff there is some c
such that checkWillAccept(M, w, c) returns true?

Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
set up a simulation of M running on w;
for (int i = 0; i < c; i++) {

simulate the next step of M running on w;
}
return whether M is in an accepting state;

}

Observation: This
trick of enforcing a

step count limits how
long M can run for!

Verifiers and RE

Theorem: If L ∈ RE, then there is a verifier for L.

Proof sketch: Let L be a RE language and let M be a recognizer for
it. Consider this function:

Note that checkIsInL always halts, since each step takes only finite time
to complete. Next, notice that if there is a c where checkIsInL(w, c)
returns true, then M accepted w after running for c steps, so w ∈ L.
Conversely, if w ∈ L, then M accepts w after some number of steps
(call that number c). Then checkIsInL(w, c) will run M on w for c steps,
watch M accept w, then return true. ■

bool checkIsInL(string w, int c) {
TM M = /* hardcoded version of a recognizer for L */;
set up a simulation of M running on w;
for (int i = 0; i < c; i++) {

simulate the next step of M running on W;
}
return whether M is in an accepting state;

}

RE and Proofs

Verifiers and recognizers give two different
perspectives on the “proof” intuition for RE.

Verifiers are explicitly built to check proofs
that strings are in the language.

If you know that some string w belongs to the
language and you have the proof of it, you can
convince someone else that w ∈ L.

You can think of a recognizer as a device that
“searches” for a proof that w ∈ L.

• If it finds it, great!

• If not, it might loop forever.

RE and Proofs

If the RE languages represent languages
where membership can be proven, what
does a non-RE language look like?

Intuitively, a language is not in RE if there
is no general way to prove that a given
string w ∈ L actually belongs to L.

In other words, even if you knew that a
string was in the language, you may never
be able to convince anyone of it!

Time-Out for Announcements!

Problem Sets

• Problem Set Five was due yesterday.

• You can use a late period to extend the
deadline to Saturday night.

• Problem Set Six goes out later today. It’s
due next Wednesday at 11:59PM.

• PS6 is shorter and designed to be able to be
completed in 5 days.

• Due to university policies, no late
submissions will be accepted for PS6.
Please budget at least two hours before the
deadline to submit the assignment.

The Last Guide

We’ve posted the final guide on the course
website:

The Guide to the Lava Diagram, which
provides an intuition for how different
classes of languages relate to one another.

Give this a read – there’s a ton of useful
information in there!

Final Exam Logistics

• Our final exam is Friday, August 14th.

• The exam is cumulative. You’re responsible
for topics from PS0 – PS6 and all of the
lectures up through and including today’s.

• The exam is open-book, open-computer, and
open-notes.

• Students with OAE accommodations: if we
don’t yet have your OAE letter, please send
it to us ASAP. If you sent it for the midterm,
you don’t need to send it again.

Preparing for the Exam

• We’ve posted some additional practice
problems and exams on the course
website under “Extra Problems”.

• We’ll have some practice final exams up
today.

• Review Session on Monday, August 12th

here during class, led by your lovely TAs!

• Practice Final on Wednesday, August
14th from 5:30-8:30 PM upstairs in Gates
104.

No Questions Today

Have one? Go to sli.do, and input code
G517, select the old event, and

vote/submit!

Back to CS103!

Finding Non-RE Languages

Finding Non-RE Languages

Right now, we know that non-RE languages
exist, but we have no idea what they look
like.

How might we find one?

Languages, TMs, and TM Encodings

Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

Some of the strings in this set might be
descriptions of TMs.

What happens if we list off all Turing
machines, looking at how those TMs
behave given other TMs as input?

M₁

M₂

M₀

M₃

M₄

M₅

…

All Turing machines, listed in some
order.

M₁

M₂

M₀

M₃

M₄

M₅

…

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

All descriptions of TMs,
listed in the same

order.

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

Flip all “accept” to
“no” and vice-versa

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

What TM has this
behavior?

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc

No

Acc

No

No Acc

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No No …

… … … … … … …

No No No Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc

No

No

Acc

Acc

No

No

…

Acc …

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … … …

No No No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

…

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has this
behavior!

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

“The language of all
TMs that do not accept

their descriptions.”

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Diagonalization Revisited

The diagonalization language, which we
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

We constructed this language to be different
from the language of every TM.

Therefore, LD ∉ RE! Let’s go prove this.

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

Theorem: LD ∉ RE.

Proof: By contradiction; assume that LD ∈ RE. This means that
there is a TM R where ℒ(R) = LD.

Now, what happens when we run R on ⟨R⟩? We know that

R accepts ⟨R⟩ if and only if ⟨R⟩ ∈ ℒ(R).

Since ℒ(R) = LD, the above expression simplifies to

R accepts ⟨R⟩ if and only if ⟨R⟩ ∈ LD.

Finally, by definition of LD, we know that ⟨R⟩ ∈ LD if and only if R
does not accept ⟨R⟩. Therefore, we see that

R accepts ⟨R⟩ if and only if R doesn’t accept ⟨R⟩.

This is impossible. We’ve reached a contradiction, so our assumption
was wrong, and so LD ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

What This Means

On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

This result can be formalized as a result called
Gödel's incompleteness theorem, one of the
most important mathematical results of all time.

Want to learn more? Take Phil 152 or CS154!

What This Means

On a more philosophical note, you could
interpret the previous result in the following
way:

There are inherent limits about what
mathematics can teach us.

There's no automatic way to do math. There
are true statements that we can't prove.

That doesn't mean that mathematics is
worthless. It just means that we need to
temper our expectations about it.

Where We Stand

● We've just done a crazy, whirlwind tour of computability
theory:

● The Church-Turing thesis tells us that TMs give us a
mechanism for studying computation in the abstract.

● Universal computers – computers as we know them – are not
just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

● Self-reference is an inherent consequence of computational
power.

● Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered
via diagonalization. They imply there are limits to mathematical
proof.

The Big Picture

DFA

NFA

Regex

CFG Decider

Recog-
nizer

Verifier

REG

CFL
R

RE

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

Next Time

● Introduction to Complexity Theory

● Not all decidable problems are created
equal!

● The Classes P and NP

● Two fundamental and important complexity
classes.

● The P NP Question≟

● A literal million-dollar question!

This is the end of the content we’ll be
testing you on for the final exam!

The next two lectures on Complexity
Theory are purely for your own interest.

Thought for the Weekend:

If it is true, I want to believe it is true.
If it is not true, I want to believe it is not true.

